Département de biologie moléculaire
En | Fr
[ Show only selected papers ] All publications

2018

Klaus Apel (1942-2017): a pioneer of photosynthesis research.
, ,
Photosynth Res, ; :
Abstract
We present here a Tribute to Klaus Apel (1942-2017), a photosynthesis pioneer-an authority on plant molecular genetics-in five parts. The first section is a prologue. The second section deals with a chronological discussion of Apel's research life, prepared by the editor Govindjee; it is based on a website article at the Boyce Thompson Institute (BTI) by Patricia Waldron ( https://btiscience.org/explore-bti/news/post/bti-says-goodbye-klaus-apel/ ), as approved for use here by Keith C. Hannon and David Stern of BTI. The third section, which focuses on Apel's pioneering work on singlet oxygen-mediated EXECUTER-dependent signaling in plants, is written by two of us (J-DR and CK). The fourth section includes three selected reminiscences, one from BTI and two from ETH (Eidgenössische Technische Hochschule). This tribute ends with section five, which is a very brief presentation of Klaus Apel's personal life, by Wiebke Apel.
Specific labeling of mitochondria of Chlamydomonas with cationic helicene fluorophores.
, , , , , , ,
Org Biomol Chem, ; 16 (6): 919-923
Abstract
Twelve cationic helicenes and one triangulene were tested for the specific labeling of mitochondria from algal cells. Octyl ester derivative 5 readily penetrates algal cells and gives rise to clear fluorescence patterns when it is used at concentrations in the μM range. Under these conditions, cell structures are well preserved and cell survival is not compromised. Cationic helicene compounds such as 5 provide new useful tools for examining the mitochondrial network and its dynamics including fission and fusion events.

2017

Chloroplast signaling and quality control.
,
Essays Biochem, ; :
Abstract
Although chloroplasts contain their own genetic system and are semi-autonomous cell organelles, plastid biogenesis and homeostasis are heavily dependent on the nucleo-cytosolic compartment. These two cellular compartments are closely co-ordinated through a complex signaling network comprising both anterograde and retrograde signaling chains. Developmental changes or any perturbation in the chloroplast system induced by a particular stress resulting from changes in environmental conditions such as excess light, elevated temperature, nutrient limitation, pathogen infection, give rise to specific signals. They migrate out of the chloroplast and are perceived by the nucleus where they elicit changes in expression of particular genes that allow for the maintenance of plastid homeostasis toward environmental cues. These genes mainly include those of photosynthesis-associated proteins, chaperones, proteases, nucleases and immune/defense proteins. Besides this transcriptional response, a chloroplast quality control system exists that is involved in the repair and turnover of damaged plastid proteins. This system degrades aggregated or damaged proteins and it can even remove entire chloroplasts when they have suffered heavy damage. This response comprises several processes such as plastid autophagy and ubiquitin-proteasome mediated proteolysis that occurs on the plastid envelope through the action of the ubiquitin-proteasome system.
The Pyrenoid: An Overlooked Organelle Comes out of Age.
Cell, ; 171 (1): 28-29
Abstract
The pyrenoid is a membrane-less organelle that exists in various photosynthetic organisms, such as algae, and wherein most global COfixation occurs. Two papers from the Jonikas lab in this issue of Cell provide new insights into the structure, protein composition, and dynamics of this important organelle.
A Light Harvesting Complex-Like Protein in Maintenance of Photosynthetic Components in Chlamydomonas.
, , , , , , , , , , , , ,
Plant Physiol, ; 174 (4): 2419-2433
Abstract
Using a genetic approach, we have identified and characterized a novel protein, named Msf1 (Maintenance factor for photosystem I), that is required for the maintenance of specific components of the photosynthetic apparatus in the green alga Chlamydomonas reinhardtii Msf1 belongs to the superfamily of light-harvesting complex proteins with three transmembrane domains and consensus chlorophyll-binding sites. Loss of Msf1 leads to reduced accumulation of photosystem I and chlorophyll-binding proteins/complexes. Msf1is a component of a thylakoid complex containing key enzymes of the tetrapyrrole biosynthetic pathway, thus revealing a possible link between Msf1 and chlorophyll biosynthesis. Protein interaction assays and greening experiments demonstrate that Msf1 interacts with Copper target homolog1 (CHL27B) and accumulates concomitantly with chlorophyll in Chlamydomonas, implying that chlorophyll stabilizes Msf1. Contrary to other light-harvesting complex-like genes, the expression of Msf1 is not stimulated by high-light stress, but its protein level increases significantly under heat shock, iron and copper limitation, as well as in stationary cells. Based on these results, we propose that Msf1 is required for the maintenance of photosystem I and specific protein-chlorophyll complexes especially under certain stress conditions.

2016

Loss of algal Proton Gradient Regulation 5 increases reactive oxygen species scavenging and H2 evolution.
, , , , , , ,
J Integr Plant Biol, ; 58 (12): 943-946
Abstract
We have identified hpm91, a Chlamydomonas mutant lacking Proton Gradient Regulation5 (PGR5) capable of producing hydrogen (H2 ) for 25 days with more than 30-fold yield increase compared to wild type. Thus, hpm91 displays a higher capacity of H2 production than a previously characterized pgr5 mutant. Physiological and biochemical characterization of hpm91 reveal that the prolonged H2 production is due to enhanced stability of PSII, which correlates with increased reactive oxygen species (ROS) scavenging capacity during sulfur deprivation. This anti-ROS response appears to protect the photosynthetic electron transport chain from photo-oxidative damage and thereby ensures electron supply to the hydrogenase.
Chloroplast retrograde signal regulates flowering.
, , , , , , , , , , ,
Proc Natl Acad Sci U S A, ; 113 (38): 10708-10713
Abstract
Light is a major environmental factor regulating flowering time, thus ensuring reproductive success of higher plants. In contrast to our detailed understanding of light quality and photoperiod mechanisms involved, the molecular basis underlying high light-promoted flowering remains elusive. Here we show that, in Arabidopsis, a chloroplast-derived signal is critical for high light-regulated flowering mediated by the FLOWERING LOCUS C (FLC). We also demonstrate that PTM, a PHD transcription factor involved in chloroplast retrograde signaling, perceives such a signal and mediates transcriptional repression of FLC through recruitment of FVE, a component of the histone deacetylase complex. Thus, our data suggest that chloroplasts function as essential sensors of high light to regulate flowering and adaptive responses by triggering nuclear transcriptional changes at the chromatin level.
DEG9, a serine protease, modulates cytokinin and light signaling by regulating the level of ARABIDOPSIS RESPONSE REGULATOR 4.
, , , , , , , , , , ,
Proc Natl Acad Sci U S A, ; 113 (25): E3568-E3576
Abstract
Cytokinin is an essential phytohormone that controls various biological processes in plants. A number of response regulators are known to be important for cytokinin signal transduction. ARABIDOPSIS RESPONSE REGULATOR 4 (ARR4) mediates the cross-talk between light and cytokinin signaling through modulation of the activity of phytochrome B. However, the mechanism that regulates the activity and stability of ARR4 is unknown. Here we identify an ATP-independent serine protease, degradation of periplasmic proteins 9 (DEG9), which localizes to the nucleus and regulates the stability of ARR4. Biochemical evidence shows that DEG9 interacts with ARR4, thereby targeting ARR4 for degradation, which suggests that DEG9 regulates the stability of ARR4. Moreover, genetic evidence shows that DEG9 acts upstream of ARR4 and regulates the activity of ARR4 in cytokinin and light-signaling pathways. This study thus identifies a role for a ubiquitin-independent selective protein proteolysis in the regulation of the stability of plant signaling components.
Activation of the Stt7/STN7 Kinase through Dynamic Interactions with the Cytochrome b6f Complex.
, , , , ,
Plant Physiol, ; 171 (1): 82-92
Abstract
Photosynthetic organisms have the ability to adapt to changes in light quality by readjusting the cross sections of the light-harvesting systems of photosystem II (PSII) and photosystem I (PSI). This process, called state transitions, maintains the redox poise of the photosynthetic electron transfer chain and ensures a high photosynthetic yield when light is limiting. It is mediated by the Stt7/STN7 protein kinase, which is activated through the cytochrome b6f complex upon reduction of the plastoquinone pool. Its probable major substrate, the light-harvesting complex of PSII, once phosphorylated, dissociates from PSII and docks to PSI, thereby restoring the balance of absorbed light excitation energy between the two photosystems. Although the kinase is known to be inactivated under high-light intensities, the molecular mechanisms governing its regulation remain unknown. In this study we monitored the redox state of a conserved and essential Cys pair of the Stt7/STN7 kinase and show that it forms a disulfide bridge. We could not detect any change in the redox state of these Cys during state transitions and high-light treatment. It is only after prolonged anaerobiosis that this disulfide bridge is reduced. It is likely to be mainly intramolecular, although kinase activation may involve a transient covalently linked kinase dimer with two intermolecular disulfide bonds. Using the yeast two-hybrid system, we have mapped one interaction site of the kinase on the Rieske protein of the cytochrome b6f complex.

2015

Conditional repression of essential chloroplast genes: Evidence for new plastid signaling pathways.
,
Biochim Biophys Acta, ; 1847 (9): 986-992
Abstract
The development of a repressible chloroplast gene expression system in Chlamydomonas reinhardtii has opened the door for studying the role of essential chloroplast genes. This approach has been used to analyze three chloroplast genes of this sort coding for the α subunit of RNA polymerase (rpoA), a ribosomal protein (rps12) and the catalytic subunit of the ATP-dependent ClpP protease (clpP1). Depletion of the three corresponding proteins leads to growth arrest and cell death. Shutdown of chloroplast transcription and translation increases the abundance of a set of plastid transcripts that includes mainly those involved in transcription, translation and proteolysis and reveals multiple regulatory feedback loops in the chloroplast gene circuitry. Depletion of ClpP profoundly affects plastid protein homeostasis and elicits an autophagy-like response with extensive cytoplasmic vacuolization of cells. It also triggers changes in chloroplast and nuclear gene expression resulting in increased abundance of chaperones, proteases, ubiquitin-related proteins and proteins involved in lipid trafficking and thylakoid biogenesis. These features are hallmarks of an unfolded protein response in the chloroplast and raise new questions on plastid protein homeostasis and plastid signaling. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Controlling expression of genes in the unicellular alga Chlamydomonas reinhardtii with a vitamin-repressible riboswitch.
,
Methods Enzymol, ; 550 : 267-281
Abstract
Chloroplast genomes of land plants and algae contain generally between 100 and 150 genes. These genes are involved in plastid gene expression and photosynthesis and in various other tasks. The function of some chloroplast genes is still unknown and some of them appear to be essential for growth and survival. Repressible and reversible expression systems are highly desirable for functional and biochemical characterization of these genes. We have developed a genetic tool that allows one to regulate the expression of any coding sequence in the chloroplast genome of the unicellular alga Chlamydomonas reinhardtii. Our system is based on vitamin-regulated expression of the nucleus-encoded chloroplast Nac2 protein, which is specifically required for the expression of any plastid gene fused to the psbD 5'UTR. With this approach, expression of the Nac2 gene in the nucleus and, in turn, that of the chosen chloroplast gene artificially driven by the psbD 5'UTR, is controlled by the MetE promoter and Thi4 riboswitch, which can be inactivated in a reversible way by supplying vitamin B12 and thiamine to the growth medium, respectively. This system opens interesting possibilities for studying the assembly and turnover of chloroplast multiprotein complexes such as the photosystems, the ribosome, and the RNA polymerase. It also provides a way to overcome the toxicity often associated with the expression of proteins of biotechnological interest in the chloroplast.

2014

RHON1 mediates a Rho-like activity for transcription termination in plastids of Arabidopsis thaliana.
, , , , , , , ,
Plant Cell, ; 26 (12): 4918-4932
Abstract
Although transcription termination is essential to generate functional RNAs, its underlying molecular mechanisms are still poorly understood in plastids of vascular plants. Here, we show that the RNA binding protein RHON1 participates in transcriptional termination of rbcL (encoding large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase) in Arabidopsis thaliana. Inactivation of RHON1 leads to enhanced rbcL read-through transcription and to aberrant accD (encoding β-subunit of the acetyl-CoA carboxylase) transcriptional initiation, which may result from inefficient transcription termination of rbcL. RHON1 can bind to the mRNA as well as to single-stranded DNA of rbcL, displays an RNA-dependent ATPase activity, and terminates transcription of rbcL in vitro. These results suggest that RHON1 terminates rbcL transcription using an ATP-driven mechanism similar to that of Rho of Escherichia coli. This RHON1-dependent transcription termination occurs in Arabidopsis but not in rice (Oryza sativa) and appears to reflect a fundamental difference between plastomes of dicotyledonous and monocotyledonous plants. Our results point to the importance and significance of plastid transcription termination and provide insights into its machinery in an evolutionary context.
Repressible chloroplast gene expression in Chlamydomonas: a new tool for the study of the photosynthetic apparatus.
, , ,
Biochim Biophys Acta, ; 1837 (9): 1548-1552
Abstract
A repressible/inducible chloroplast gene expression system has been used to conditionally inhibit chloroplast protein synthesis in the unicellular alga Chlamydomonas reinhardtii. This system allows one to follow the fate of photosystem II and photosystem I and their antennae upon cessation of chloroplast translation. The main results are that the levels of the PSI core proteins decrease at a slower rate than those of PSII. Amongst the light-harvesting complexes, the decrease of CP26 proceeds at the same rate as for the PSII core proteins whereas it is significantly slower for CP29, and for the antenna complexes of PSI this rate is comprised between that of CP26 and CP29. In marked contrast, the components of trimeric LHCII, the major PSII antenna, persist for several days upon inhibition of chloroplast translation. This system offers new possibilities for investigating the biosynthesis and turnover of individual photosynthetic complexes in the thylakoid membranes. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy.
Loss of chloroplast ClpP elicits an autophagy-like response in Chlamydomonas.
,
Autophagy, ; 10 (9): 1685-1686
Abstract
Chloroplast genomes contain a single ClpP1 gene encoding one of the catalytic subunits of the evolutionarily conserved ATP-dependent Clp protease. Efforts to inactivate this protease in the chloroplast through targeted disruption of the clpP1 gene have failed, suggesting that it is essential for cell survival in plants. To circumvent this problem, a repressible chloroplast gene expression system was developed in the green unicellular alga Chlamydomonas reinhardtii. This system takes advantage of the nuclear Nac2 gene fused to the MetE promoter and Thi4 riboswitch, which can be repressed by adding vitamin B12 and thiamine to the growth medium. Nac2 encodes a chloroplast protein that interacts specifically with the 5'UTR of the psbD mRNA and is involved in processing/translation of this transcript. Loss of Nac2 leads to the specific degradation of psbD mRNA. Because the psbD 5'UTR is necessary and sufficient for the Nac2-dependent stability of psbD mRNA, this dependence can be transferred to any chloroplast gene by linking its coding sequence to the psbD 5 'UTR. In this way it was possible to repress the clpP1 gene in a reversible way with vitamins.
Conditional Depletion of the Chlamydomonas Chloroplast ClpP Protease Activates Nuclear Genes Involved in Autophagy and Plastid Protein Quality Control.
, , , , , , , , , , , , , , ,
Plant Cell, ; 26 (5): 2201-2222
Abstract
Plastid protein homeostasis is critical during chloroplast biogenesis and responses to changes in environmental conditions. Proteases and molecular chaperones involved in plastid protein quality control are encoded by the nucleus except for the catalytic subunit of ClpP, an evolutionarily conserved serine protease. Unlike its Escherichia coli ortholog, this chloroplast protease is essential for cell viability. To study its function, we used a recently developed system of repressible chloroplast gene expression in the alga Chlamydomonas reinhardtii. Using this repressible system, we have shown that a selective gradual depletion of ClpP leads to alteration of chloroplast morphology, causes formation of vesicles, and induces extensive cytoplasmic vacuolization that is reminiscent of autophagy. Analysis of the transcriptome and proteome during ClpP depletion revealed a set of proteins that are more abundant at the protein level, but not at the RNA level. These proteins may comprise some of the ClpP substrates. Moreover, the specific increase in accumulation, both at the RNA and protein level, of small heat shock proteins, chaperones, proteases, and proteins involved in thylakoid maintenance upon perturbation of plastid protein homeostasis suggests the existence of a chloroplast-to-nucleus signaling pathway involved in organelle quality control. We suggest that this represents a chloroplast unfolded protein response that is conceptually similar to that observed in the endoplasmic reticulum and in mitochondria.
Short-term acclimation of the photosynthetic electron transfer chain to changing light: a mathematical model.
, , , ,
Philos Trans R Soc Lond B Biol Sci, ; 369 (1640): 20130223
Abstract
Photosynthetic eukaryotes house two photosystems with distinct light absorption spectra. Natural fluctuations in light quality and quantity can lead to unbalanced or excess excitation, compromising photosynthetic efficiency and causing photodamage. Consequently, these organisms have acquired several distinct adaptive mechanisms, collectively referred to as non-photochemical quenching (NPQ) of chlorophyll fluorescence, which modulates the organization and function of the photosynthetic apparatus. The ability to monitor NPQ processes fluorometrically has led to substantial progress in elucidating the underlying molecular mechanisms. However, the relative contribution of distinct NPQ mechanisms to variable light conditions in different photosynthetic eukaryotes remains unclear. Here, we present a mathematical model of the dynamic regulation of eukaryotic photosynthesis using ordinary differential equations. We demonstrate that, for Chlamydomonas, our model recapitulates the basic fluorescence features of short-term light acclimation known as state transitions and discuss how the model can be iteratively refined by comparison with physiological experiments to further our understanding of light acclimation in different species.
Regulation and dynamics of the light-harvesting system.
Annu Rev Plant Biol, ; 65 : 287-309
Abstract
Photosynthetic organisms are continuously subjected to changes in light quantity and quality, and must adjust their photosynthetic machinery so that it maintains optimal performance under limiting light and minimizes photodamage under excess light. To achieve this goal, these organisms use two main strategies in which light-harvesting complex II (LHCII), the light-harvesting system of photosystem II (PSII), plays a key role both for the collection of light energy and for photoprotection. The first is energy-dependent nonphotochemical quenching, whereby the high-light-induced proton gradient across the thylakoid membrane triggers a process in which excess excitation energy is harmlessly dissipated as heat. The second involves a redistribution of the mobile LHCII between the two photosystems in response to changes in the redox poise of the electron transport chain sensed through a signaling chain. These two processes strongly diminish the production of damaging reactive oxygen species, but photodamage of PSII is unavoidable, and it is repaired efficiently.
Tools for regulated gene expression in the chloroplast of Chlamydomonas.
, ,
Methods Mol Biol, ; 1132 : 413-424
Abstract
The green unicellular alga Chlamydomonas reinhardtii has emerged as a very attractive model system for chloroplast genetic engineering. Algae can be transformed readily at the chloroplast level through bombardment of cells with a gene gun, and transformants can be selected using antibiotic resistance or phototrophic growth. An inducible chloroplast gene expression system could be very useful for several reasons. First, it could be used to elucidate the function of essential chloroplast genes required for cell growth and survival. Second, it could be very helpful for expressing proteins which are toxic to the algal cells. Third, it would allow for the reversible depletion of photosynthetic complexes thus making it possible to study their biogenesis in a controlled fashion. Fourth, it opens promising possibilities for hydrogen production in Chlamydomonas. Here we describe an inducible/repressible chloroplast gene expression system in Chlamydomonas in which the copper-regulated Cyc6 promoter drives the expression of the nuclear Nac2 gene encoding a protein which is targeted to the chloroplast where it acts specifically on the chloroplast psbD 5'-untranslated region and is required for the stable accumulation of the psbD mRNA and photosystem II. The system can be used for any chloroplast gene or transgene by placing it under the control of the psbD 5'-untranslated region.
Chloroplast unfolded protein response, a new plastid stress signaling pathway?
,
Plant Signal Behav, ; 9 (10): e972874
Abstract
A unique feature of the ATP-dependent ClpP protease of eukaryotic photosynthetic organisms is that its catalytic subunit ClpP1 is encoded by the chloroplast genome. Attempts to inactivate this subunit through chloroplast transformation have failed because it is essential for cell survival. To study the function of ClpP we have developed a repressible chloroplast gene expression system in Chlamydomonas reinhardtii. This system is based on the use of a chimeric nuclear gene in which the vitamin-repressible MetE promoter and Thi4 riboswitch have been fused to the coding sequence of Nac2. Upon entry into the chloroplast the Nac2 protein specifically interacts with the psbD 5'UTR and is required for the proper processing/translation of the psbD mRNA. This property can be conveyed to any chloroplast mRNA by replacing its 5'UTR with that of psbD. In this study we have chosen clpP1 as plastid target gene and examined the cellular events induced upon depletion of ClpP through transcriptomic, proteomic, biochemical and electron microscope analysis. Among the most striking features, a massive increase in protein abundance occurs for plastid chaperones, proteases and proteins involved in membrane assembly/disassembly strongly suggesting the existence of a chloroplast unfolded protein response.
Separation of membrane protein complexes by native LDS-PAGE.
, , , , ,
Methods Mol Biol, ; 1072 : 667-676
Abstract
Gel electrophoresis has become one of the most important methods for the analysis of proteins and protein complexes in a molecular weight range of 1-10(7) kDa. The separation of membrane protein complexes remained challenging to standardize until the demonstration of Blue Native PAGE in 1991 [1] and Clear Native PAGE in 1994 [2]. We present a robust protocol for high-resolution separation of photosynthetic complexes from Arabidopsis thaliana using lithium dodecyl sulfate as anion in a modified Blue Native PAGE (LDS-PAGE). Here, non-covalently bound chlorophyll is used as a sensitive probe to characterize the assembly/biogenesis of the pigment-protein complexes essential for photosynthesis. The high fluorescence yield recorded from chlorophyll-binding protein complexes can also be used to establish the separation of native protein complexes as an electrophoretic standard.

Page 1 of 10, showing 20 record(s) out of 183 total